Beta-ketoadipate enol-lactone hydrolases I and II from Acinetobacter calcoaceticus.

نویسندگان

  • R N Patel
  • S Mazumdar
  • L N Ornston
چکیده

Beta-Ketoadipate enol-lactone hydrolase catalyzes a common step in the utilization of protocatechuate and cis,cis-muconate by bacteria. Either of the two compounds elicits the synthesize of an enol-lactone hydrolase in Acinetobacter. The enol-lactone hydrolase that is induced by each compound was purified, and the properties of the proteins were compared. Both enzymes appear to be dimers with molecular weights of approximately 25,000. The amino acid compositions of the enzymes differ, and the two proteins do not cross-react serologically. The NH2-terminal amino acid residue of the protocatechuate-induced enol-lactone hydrolase (ELH I) is methionine and the NH2-terminal amino acid residue of the cis,cis-muconate-induced enol-lactone hydrolase (ELH II) is proline. Therefore, ELH I and ELH II appear to be the products of different structural genes. The serological specificity of ELH I and ELH II made it possible to demonstrate the mutually independent regulation of their synthesis in wild type cells and in constitutive mutant strains. The synthesis of ELH I is not impaired in mutant strains that cannot synthesize ELH II. The rapid characterization of mutant strains that produce ELH I or ELH II constitutively was made possible by the development of pH indicator enzyme assays that were performed with toluenized cells. cis,trans-Muconate, which does not support the growth of Acinetobacter, elicits the synthesis of the enzymes that normally are induced by cis,cis-muconate to 20% of fully induced levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning and expression of Acinetobacter calcoaceticus catBCDE genes in Pseudomonas putida and Escherichia coli.

This report describes the isolation and preliminary characterization of a 5.0-kilobase-pair (kbp) EcoRI DNA restriction fragment carrying the catBCDE genes from Acinetobacter calcoaceticus. The respective genes encode enzymes that catalyze four consecutive reactions in the catechol branch of the beta-ketoadipate pathway: catB, muconate lactonizing enzyme (EC 5.5.1.1); catC, muconolactone isomer...

متن کامل

Cloning and genetic organization of the pca gene cluster from Acinetobacter calcoaceticus.

The beta-ketoadipate pathway of Acinetobacter calcoaceticus comprises two parallel metabolic branches. One branch, mediated by six enzymes encoded by the cat genes, converts catechol to succinate and acetyl coenzyme A (acetyl-CoA); the other branch, catalyzed by products of the pca genes, converts protocatechuate to succinate and acetyl-CoA by six metabolic reactions analogous or identical to t...

متن کامل

Novel nuclear magnetic resonance spectroscopy methods demonstrate preferential carbon source utilization by Acinetobacter calcoaceticus.

Novel nuclear magnetic resonance spectroscopy techniques, designated metabolic observation, were used to study aromatic compound degradation by the soil bacterium Acinetobacter calcoaceticus. Bacteria which had been rendered spectroscopically invisible by growth with deuterated (2H) medium were used to inoculate cultures in which natural-abundance 1H hydrogen isotopes were provided solely by ar...

متن کامل

Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065.

Protocatechuate 3,4-dioxygenase (EC 1.13.11.3) catalyzes the ring cleavage step in the catabolism of aromatic compounds through the protocatechuate branch of the beta-ketoadipate pathway. A protocatechuate 3,4-dioxygenase was purified from Streptomyces sp. strain 2065 grown in p-hydroxybenzoate, and the N-terminal sequences of the beta- and alpha-subunits were obtained. PCR amplification was us...

متن کامل

Enzymes of the beta-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp.

Protocatechuate is a universal growth substrate for members of the family Rhizobiaceae, and these bacteria utilize the aromatic compound via the beta-ketoadipate pathway. This report describes transcriptional controls exercised by different subgroups of the Rhizobiaceae over five enzymes that catalyze consecutive reactions in the pathway: protocatechuate oxygenase (EC 1.13.11.3), beta-carboxy-c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 250 16  شماره 

صفحات  -

تاریخ انتشار 1975